Forum consacré à l'univers de Professeur Layton. Vous pouvez vous renseigner sur les jeux, le film, ou même discuter avec des fans ! Vous pouvez également créer et lire des créations littéraires et graphiques ! Bienvenue sur FPL !
 
AccueilFAQRechercherMembresGroupesS'enregistrerConnexion
~ Bienvenue sur FPL, Invité ! ~
~ Nous sommes le Lun 25 Juin 2018 ~
~ Aujourd'hui, le forum a 2503 jours, il contient 1930 sujets, 142 catégories/forums et 138886 messages ! Nous sommes 261 membres et le dernier membre enregistré est Nathou ! ~

 

 Énigme 399 : Logique diabolique

Voir le sujet précédent Voir le sujet suivant Aller en bas 
Aller à la page : Précédent  1, 2
AuteurMessage
gorz67
Maître des cartes
avatar

Masculin Age : 25
Date de naissance : 25/11/1992
Date d'inscription : 12/05/2014
Localisation : Strabourg
Emploi/loisirs : Etudiant

MessageSujet: Re: Énigme 399 : Logique diabolique   Mer 29 Juil 2015 - 19:11

Clive a écrit:
Bon, je vais vous donner un bon indice : pour trouver le troisième chiffre de chaque carré, il faut absolument réfléchir avec une logique "carrée" pour ainsi dire. Ça peut être vite assez compliqué, enfin long surtout, de le trouver, heureusement il y a des astuces. En espérant que ça vous aide ^^

Le fait que 4 soit le carré de 2 et de -2 a t-il de l'importance ?

__________________________________________________________________________________


L'amitié, c'est comme un contrat, si une des 2 volontés ne veut pas, elle existe pas.

 

signa:
 
Voir le profil de l'utilisateur
Clive
Majordome de Lordinox / Possesseur du Chaudron Sacré
~ Homonumber n°22 ~
avatar

Masculin Age : 16
Date de naissance : 22/01/2002
Date d'inscription : 25/10/2013
Localisation : Here
Emploi/loisirs : Chat, musique, lecture & écriture
Humeur : Hmm... Bonne question.

MessageSujet: Re: Énigme 399 : Logique diabolique   Mer 29 Juil 2015 - 20:36

Non, ce qui est important est juste que ce soit un carré. Il faut vraiment penser à un carré.

__________________________________________________________________________________


Merci Edoline pour le superbe kit <3

Miahoux !:
 


GROS SPOIL FIN HIGURASHI:
 


Et vive FPL !
Voir le profil de l'utilisateur
Clive
Majordome de Lordinox / Possesseur du Chaudron Sacré
~ Homonumber n°22 ~
avatar

Masculin Age : 16
Date de naissance : 22/01/2002
Date d'inscription : 25/10/2013
Localisation : Here
Emploi/loisirs : Chat, musique, lecture & écriture
Humeur : Hmm... Bonne question.

MessageSujet: Re: Énigme 399 : Logique diabolique   Ven 28 Aoû 2015 - 10:20

Je crois qu'il est grand ( grand ) temps de débloquer cette énigme, alors voilà : pour comprendre la logique il faut utiliser un carré de x cases de côté, différent selon la série, rempli avec les chiffres de 1 à x² de gauche droite, de haut en bas.

__________________________________________________________________________________


Merci Edoline pour le superbe kit <3

Miahoux !:
 


GROS SPOIL FIN HIGURASHI:
 


Et vive FPL !
Voir le profil de l'utilisateur
Louisedu35
Maîtresse des énigmes
~ Timeuse à temps partiel ~


Féminin Age : 24
Date de naissance : 29/10/1993
Date d'inscription : 18/03/2013
Localisation : Probablement quelque part.
Emploi/loisirs : Maths, maths, maths.
Humeur : Mais qu'est-ce qu'une humeur ?

MessageSujet: Re: Énigme 399 : Logique diabolique   Sam 19 Sep 2015 - 13:08

Va falloir donner un autre indice, Clive, et un vrai cette fois. u__u Les gens trouveront jamais avec aussi peu d'indications.

__________________________________________________________________________________


Voir le profil de l'utilisateur
Louisedu35
Maîtresse des énigmes
~ Timeuse à temps partiel ~


Féminin Age : 24
Date de naissance : 29/10/1993
Date d'inscription : 18/03/2013
Localisation : Probablement quelque part.
Emploi/loisirs : Maths, maths, maths.
Humeur : Mais qu'est-ce qu'une humeur ?

MessageSujet: Re: Énigme 399 : Logique diabolique   Lun 5 Oct 2015 - 19:36

Bon, j'aurais préféré que ce soit Clive qui s'en occupe, mais vu qu'il ne répond pas...

En guise d'indice, je vais vous donner le truc pour obtenir le troisième nombre de chaque série : si le nombre du milieu est N², il faut tracer un carré de NxN cases, et le remplir avec les nombres de 1 à N².
Ensuite, il faut repérer tous les carrés faisant entre 1 et N case(s) de côté qui se trouvent à l'intérieur du grand carré, et pour chacun de ces carrés faire la somme des nombres qui se trouvent à l'intérieur.
Il faut ensuite additionner les nombres ainsi obtenus pour chaque carré, et on a le résultat final !


Maintenant que vous connaissez la logique, il vous reste à trouver un moyen de calculer ce fameux nombre.

__________________________________________________________________________________


Voir le profil de l'utilisateur
Louisedu35
Maîtresse des énigmes
~ Timeuse à temps partiel ~


Féminin Age : 24
Date de naissance : 29/10/1993
Date d'inscription : 18/03/2013
Localisation : Probablement quelque part.
Emploi/loisirs : Maths, maths, maths.
Humeur : Mais qu'est-ce qu'une humeur ?

MessageSujet: Re: Énigme 399 : Logique diabolique   Lun 26 Oct 2015 - 18:34

J'ai l'étrange impression que cette énigme n'intéresse plus personne, donc je vais donner la réponse.

Déjà, on considère un carré de côté N, rempli avec les nombres de 1 à N².
On va également noter M = (N² + 1) / 2 (c'est juste une notation qui servira dans la suite).

On peut déjà remarquer quelque chose : pour tout nombre X du carré, il existe un nombre Y également dans le carré (éventuellement égal à X) tel que X + Y = N² + 1. Écrit autrement : X + Y = 2M.
Par exemple, si N = 3, on a : 1+9 = 10, 2+8 = 10, 4+6 = 10, etc.

On peut également remarquer que ce nombre Y est "de l'autre côté du carré", si je puis dire, par rapport au nombre X. C'est-à-dire que si X est, par exemple, sur la 2ème ligne en partant du haut et sur la 3ème colonne en partant de la droite, alors Y sera sur la 2ème ligne en partant du bas et sur la 3ème colonne en partant de la gauche. Et si X est sur la case du milieu, alors Y = X.
Cela fait que X et Y apparaîtront autant de fois l'un que l'autre dans la somme finale !

Du coup, on peut remplacer X et Y par "M" dans le carré, sans changer la somme finale : cela remplacera en effet les "X+Y" dans la somme finale par "M+M", ce qui donne le même résultat, et puisqu'il y aura autant de +X que de +Y dans la somme finale, il n'y aura pas un X ou un Y isolé.


On a donc : Résultat = M*(nombre de fois que les cases sont comptées).
Reste donc à calculer combien de fois chaque case est comptée au total. Cela revient en fait à compter le nombre de fois qu'un carré de taille kxk apparaît dans le grand carré.
On a du coup, dans le cas de l'énigme :
Résultat = M * ( 1*(nombres de carrés de côté 1) + 4*(nombre de carrés de côté 2) + ... + 36*(nombre de carrés de côté 6)).

C'est un peu long, mais on va compter.
- Carrés de côté 1 : On en a 36. Je ne pense pas avoir besoin de dire pourquoi.
- Carrés de côté 2 : Le coin supérieur gauche d'un carré de taille 2x2 ne peut se trouver que sur l'une des cinq premières lignes et l'une des cinq premières colonnes (sinon le petit carré sort du grand carré). On en a donc 5*5 = 25.
On applique un raisonnement similaire pour les cas suivants :
- Carrés de côté 3 : On en a 4*4 = 16.
- Carrés de côté 4 : On en a 3*3 = 9.
- Carrés de côté 5 : On en a 2*2 = 4.
- Carrés de côté 6 : Il y en a un seul.

Du coup, on a :
Résultat = M * ( 1*36 + 4*25 + 9*16 + 16*9 + 25*4 + 36*1)

Plus qu'à sortir une calculatrice et remplacer M par sa valeur, qui est 18,5.
Résultat = 10 360.



Du coup, je vais fermer l'énigme et donner dix picarats à Corvus pour avoir trouvé le début de la réponse demandée. Désolée pour ceux qui ont cherché, mais comme vous le savez seule une bonne réponse apporte des picarats. :/
Si vous ne comprenez pas certains points de mon explication (je ne sais pas si elle a été assez claire ^^'), n'hésitez pas à me demander par MP.

Sur ce, je locke.

__________________________________________________________________________________


Voir le profil de l'utilisateur
Contenu sponsorisé




MessageSujet: Re: Énigme 399 : Logique diabolique   

 

Énigme 399 : Logique diabolique

Voir le sujet précédent Voir le sujet suivant Revenir en haut 
Page 2 sur 2Aller à la page : Précédent  1, 2

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Forum Professeur Layton :: Général :: Énigmes-